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Balancing an Inverted Pendulum

Abstract

1 Introduction

An inverted pendulum is a touchstone which every Robotic student touches once [1]. Beginning from sta-
bilization of unstable open-loop system to real-world application of Segway, it is a benchmark in Control
Theory and Robotics. It is also a good application to aid in learning of any new algorithm, which in this
scenario, is Q-learning. Thus, the goal of the project is to understand the working of Q-learning, a machine
learning algorithm, by implementation for an inverted pendulum.

Figure 1: (a)Segway [2] (b) Furuta Pendulum [3]

The inverted pendulum problem has many variations: Furuta Pendulum [3], Double Inverted Pendulum [4],
etc. In this project, a case of inverted Pendulum on cart is considered. The system may appear simplistic
in design. However, it is a non-linear system with a static stable (equilibrium) point at pending position
(face-down) and dynamic equilibrium point at upright position.

This makes designing a control system for an inverted pendulum into a challenging problem. In the case
of Q-learning, it is not needed to know the model. Q-learning is regarded as a model-free [5] reinforcement
learning. However, it does come with its own set of challenges. One of the most important one being dis-
cretization of the model as Q-learning works for discrete system with an end-game reward.

Literature related to this project is discussed in section 2. Then in section 3, plan towards the project
problem is charted out. Next in section 4 and 5, the actual implementation and results are shown. The
results are analyzed in section 6 and concluded in section 7.
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2 Related Work

The work by Lasse Scherflig [6] starts with explaination of Reinforcement Learning Theory and goes on to
explain the difference between Supervised Learning and Reinforcement Learning. The main difference being
Reinforcement Learning doesn’t have a set of sample actions to be taken, it is infact learn by exploring and
assessing the rewards.

The paper then discusses the Inverted Pendulum model, followed by the work done. The paper address
2 problems: balancing and full control. Balancing is about maintaining balance when in face-up position
and Full control is about getting to face-up position from any position including face-down position. While
the first problem is solved using Q-learning, the second part uses Artificial Neural Network (ANN) as the
number of states are too large.

In a second paper, the author disusses use of resource-allocation network with Q-learning [7]. The paper
starts with a discussion on use of supervised learning and memorization for balancing an inverted pendulum.
The method essentially memorize each move using Gaussian signal. Then the disuccusion moves onto how
the use Q-learning to solve the problem.

Figure 2: Q-learning network with Restart algorithm [7]

Instead of using a Q-table, the paper talks about use of Q-learning network as shown in Figure 2. The
point is instead of storing each state-action pair and making it a large memorization table like supervised
learning, use a network and reallocate resources. So everytime a new state-action is learnt, it is store at the
unit that is least useful. This approach is called Restart Algorithm and gives results that work better than
a combination of supervised learning and memorization.
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3 Approach

3.1 Q-learning: Introduction

The task is defined as balancing an inverted pendulum on a cart in an upright position. The method chosen
for this task is a machine learning algorithm: Q-learning. It is a method, that doesn’t require knowledge of
model for learning. It learns by experiencing the reward for taking a sequence of action [5].

state

reward Agent action

Environment

Figure 3: Interface between Agent and Environment in Q-learning [6]

In other words, the agent takes an action and observes the result in form of result from environment as
shown in Figure 3. The reward is stored in a table, called Q-table, along with state. The next time, when
the same state is encountered it decides to taken an action based on rewards learned last time.

3.2 Q-learning: Exploration

A good reward would lead to taking the action again. And a bad reward would lead to not taking the action
again. But what if there was a better reward? Thus, there is a component of exploration. That is when
deciding the next action, it takes an action not explored even when an existing action gives a good reward.

Based on the available combination of states-action pairs, the size of Q-table is decided. Also, it affects the
number of iterations to be performed to obtain satisfactory results.

3.3 Q-learning: Formula

For each iteration, the current state (s) is observed. An action is chosen for execution based on equation (1)
and then the Q-table is updates based on action chosen as mention in equaion (2):

w(s) = argmaz,Q(s, a) (1)

Q(S, a’) =71+ WmaxaQ(s/7 (l/) (2)

where m(s) is policy for State s; a is action chosen; r is reward for action chosen; « is delay reward factor
and s is the new state after action is executed [6].
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4 Implementation

The program is implemented in Python 3. The code is written to build the Q-table over multiple iterations
and store the best result. The best results can then be played in an animation using Penplot command from
the plot.py file.

The program (Inverted_pendulum_q-learning) starts with an empty Q-table. The program iterates over
multiple episodes and for each episode, the current state is randomized. A policy is calculated for the current
state and all actions. An action is chosen based on the calculated policy and executed.

Based on the chosen action, a new state is calculated based on the system model. Based on this new state,
a reward is calculated. The reward is based on position of cart and the angle of pendulum. The reward is
used to updated the Q-table. If the pendulum is dropped, a new episode begins with new random start state.

Note that an inverted pendulum is a continuous system. Thus, each state is discretized for implementation.

The states chosen are:

e Position of cart (x)

e Linear Velocity of cart &

e Angle of pendulum with cart ()

e Angular velocity of pendulum ()
Next, the actions set includes:

e Move left (—1)

e Move right (1)

Thus, the cart moves with a Force of F' Newton on left or right based on action chosen. The F'is set to 10V
and can be changed. Other variables include:

e Magnitude of Force on cart (F) and Gravity constant (g)
e Mass of cart (m.), Mass of pole (m,) and Length of Pole (I,)
e Reward delay factor ()

e Exploration factor (e)
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5 Results

The Figure 5 shows an example of results after 1000000 iterations. As seen, the pendulum is able to maintain
itself in the upright position and eventually stops when it goes at the end of cart track (beyond 2.4 units).

g@ v

Time:L8ds
08 step:92

0.4

0.2 . l
0.0

-3 -2 -1 0 1 2

pan/zoom, x=-2.30806 _y=-0.0652778

Figure 4: Snapshot of animation for Inverted Pendulum Balancing

It can be seen that as the reward is maximum at the top, it attempts to maintain the state. Note, that this
system is dynamically system and thus must move continuously to be at the unstable equilibrium point.

Al

Figure 5: Results
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6 Analysis

Based on results for various experimental runs, it was observed that system is able to identify the policy for
maintaining the angle of pendulum between —1 to 1 degrees. To assist in learning, the initial few trials had
the start state at (x,%,6,6) = (0,0,0,0). At later iterations (episodes), the system starts with initial state
which is randomized. This helps learn better in fewer iterations.

To achieve better results, another method would be to create more discrete states. This also applies for the
case when the algorithm wants to learn about bringing up the pendulum from face-down to face-up position.
However, a Q-table would not be ideal for a high number of states. For such cases, Artifical Neural Networks
(ANN) should be considered as shown in [6]

7 Conclusion

The project was concluded by implementing the Q-learning algorithm to balance an inverted pendulum in
an upright position. It was also realized that it is difficult to implement a continuous system. It requires
discretization of states which can prove challenging.

If the discretization is too little, the transition from one state to another is less accurate and with more
states the Q-table becomes quite big. With lots of state, even more iterations are required to learn and build
the Q-table. In such a case, other options such as Artifical Neural Networks should be explored.

8 Future Work

This project focused on balancing the pendulum, a natural extension would be to get the pendulum to come
into an upright position from a face down position.

Figure 6: Balancing a glass of Wine

Though an interesting future work would be to learn to balance the inverted pendulum when moving in a
particular direction. This could be seen applicable for a scenario when a mobile Robot would bring you a
glass of wine while balancing it at the end of stick (an inverted pendulum) as shown in Figure 6.
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Appendix

Read Me

The program is coded in Python 3. To run the program:
python3 inverted_pendulum-q_learning.py

Ensure that both codes: (1) inverted_pendulum_q_learning.py and (2) plot.py are in the same folder. First
compile and then run the code. In Ubuntu:

chmod +x inverted_pendulum_q_learning.py
chmod +x plot.py

To change values of parameters such as 7, €, etc. change the value at start of function. To change display
setting, use command:

Penplot(best_states, anime=True, fig=True)

where anime=True is for animation and fig=True is for graph.
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Balancing an Inverted Pendulum

Main Program (In

python3)

#!/usr/bin/env python

import numpy as
from plot import
import random

from math import

#

np
Penplot

degrees, sin,

cOSs

#

CONSTANT VALUES

#

#

mass_pole = 0.1
mass_cart = 0.5

#

mass_total = mass_pole + mass_cart

length_pole = 0.

force_magnitude
constant_gravity
tau = 0.02

alpha =
gamma =

oo

)
)

global epsilon
epsilon = 0.2

3

= 2
= 9.8

i
i
7

FUNCTIONS

#

def calculate_index (current_state):
if current_state[0] < —0.8:

elif current_state [0] < 0.8:

else:

if current_state[l] < —0.5:

elif current_state[l] < 0.5:

else:

if degrees(current_state[2]) < —12.0:
elif degrees(current_state[2]) < —6.0:

elif degrees(current_state[2]) < —1.0:

x =0
x =1
X = 2

x_dot = 0
x_dot =1
x_dot = 2

theta = 0

theta = 1

theta = 2

7
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elif degrees(current_state [2]) < 0.0:

theta = 3

elif degrees(current_state [2]) < 1.0:
theta = 4

elif degrees(current_state[2]) < 6.0:
theta = 5

elif degrees(current_state[2]) < 12.0:
theta = 6

else:
theta = 7

if degrees(current_state[3]) < —50.0:
theta_dot = 0

elif degrees(current_state [3]) < —25.0:
theta_dot =1

elif degrees(current_state[3]) < 25.0:
theta_dot = 2

elif degrees(current_state[3]) < 50.0:
theta_dot = 3

else:
theta_dot = 4

return x, x_dot, theta, theta_dot

def calculate_prob (current_state, Q_table):

policy = []
x, x.-dot, theta, theta_.dot = calculate_index (current_state)
value = [Q_table[action, x, x_dot, theta, theta_dot] for action in
range (2) |
for action__ in value:
if action__ = max(value):
policy .append (1.0 — epsilon + epsilon / 2)
else:
policy .append(epsilon / 2)
if sum(policy) = 1.0:
return policy
else:

policy = [0.5, 0.5]
return policy

def choose_action (policy):
prob.num = random.randrange(0,100)/100.0
if prob.num <= policy [0]:
action_choosen = 0

else:
action_choosen = 1
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107 return action_choosen

1o def update_state(current_state , action_choosen):

111 x_cur, x_dot_cur, theta_cur, theta_dot_cur = current_state
112
113 if action_choosen = 0:

# action 0 is left
114 force_value = — force_magnitude
115 else:

# action 1 is right

116 force_value = force_magnitude
117
118 temp = (force_value + (mass_polexlength_pole) x theta_dot_cur**2 % sin

(theta_cur)) / mass_total

120 theta_acc = (constant_gravity * sin(theta_cur) — cos(theta_cur) * temp

) /A

121 (length_pole * ((4.0/3.0) — mass_pole x cos(theta_cur)**2
/ mass_total))

123 x_acc = temp — (mass_polexlength_pole) x theta_acc % cos(theta_cur) /
mass_total

125 x_new = x_cur + (tau * x_dot_cur)

126 x_dot_new = x_dot_cur + (tau % x_acc)

127 theta.new = theta_cur + (tau * theta_dot_cur)

128 theta_dot_new = theta_dot_cur + (tau * theta_acc)
129

130 return x_new, x_dot_new, theta_new, theta_dot_new

131

132 def update_Qtable(current_state , action_choosen, new._state, reward, Q-_table):

133

134 x, x-dot, theta, theta_dot = calculate_index (new_state)

135 Q-max = max(Q_table[0, x, x_dot, theta, theta_dot], Q_table[1l, x,
x_dot, theta, theta_dot])

137 x, x-dot, theta, theta.dot = calculate_index (current_state)

138 Q_cur = Q_table[action_choosen, x, x_dot, theta, theta_dot]

139

140 Q_table[action_choosen , x, x_dot, theta, theta_dot] = Q_cur + alpha x
(reward 4+ (gammaxQ_max) — Q_cur)

141

142 return Q_table

s def take_action(current_state , Q_table):

146 policy = calculate_prob(current_state , Q-table)

147 action_choosen = choose_action (policy)

148 new_state = update_state(current_state , action_choosen)
149

150 reward = 0

151

152 if abs(new_state[0]) < 2.4:
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if abs(degrees(new_state[2])) < 1.0:

reward = 10

elif abs(degrees(new_state[2])) < 3.0:
reward = 5

elif abs(degrees(new_state[2])) < 6.0:
reward = 2

elif abs(degrees(new_state[2])) < 20.0:
reward = 1

Q-table = update_-Qtable(current_state , action_choosen, new_state,

reward, Q-table)

retu

rn reward, new_state, Q_table

#*
MAIN PROGRAM

#
#
i
Q

state_x

max._steps =
best_states

max_episodes

#

_table = np.zeros([2, 3, 3, 8, 5])

# action (2) x

(3) * state_x_dot (3) % state_theta (6) * state_theta_dot (3)

0
=

= 1000000

# max_episodes = 10000

for episode

stat

in range(1l,max_episodes+1):

es = [

if episode < 10000:

elif

elif

elif

current_state = (0,0,random.

episode < 20000:

current_state = (0.lxrandom.

(73,3) 70)
episode < 30000:

current_state = (0.lxrandom.

(_575) 70)
episode < 50000:

current_state = (0.lxrandom.

randrange(—12,12) ,0)

else:

stat

for

current_state = (0.lxrandom.

randrange (—15,15) ,0)
es.append(current_state)
step in range(1,1000):
reward, new_state, Q_table

Q_table)
current_state = new_state

randrange(—1,1),0)

# start state = 0
randrange (—5,5) ,0,random.randrange
randrange (—8,8) ,0 ,random.randrange

randrange (—15,15) ,0 ,random .

randrange (—20,20) ,0,random.

take_action (current_state ,
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states.append(current_state)

if reward < 1:

Pendulum dropped

Penplot (best_states ,

#

if step > max_steps:
best_states = states
max_steps = step

if (episode % 10000) = O:

print (' After’,episode, episode’)

print ('Max steps: ’,max_steps)

print (’ )

# Penplot(best_states , anime=True,
epsilon —= 0.002

if epsilon < 0:
epsilon = 0

break

anime=True, fig=True)

fig=False)
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Program for animation (In python3)

#!/usr/bin/env python

import math

import matplotlib

matplotlib.use( ' QthAgg )

import matplotlib.pyplot as plt

# import matplotlib.pyplot as plt

import matplotlib.animation as animation

class Penplot(object):

def __init__(self, states, anime=False, fig=False):
self.anime = anime
self.fig = fig
self .x = [state[0] for state in states]
self.x_dot = [state[l] for state in states]
self.theta = [state[2] for state in states]
self.theta_dot = [state[3] for state in states]
self. _process()
def _plot(self, data):
x, theta, frame = data
self.time_text.set_text (” time:%.2 fs\nstep:%d” % (frame=0.02,
y = 0.05
theta_x = x + math.sin(theta) % 0.25
theta_.y = y + math.cos(theta) * 0.25
self.car.set_data(x, y / 2.0)
self.line.set_data ((x, theta_x), (y, theta_y))
def _gen(self):
for frame in range(len(self.x)):

yield self.x[frame], self.theta[frame], frame

def _process(self):
if self.anime:

fig = plt.figure(figsize=(20, 4.5))
ax = fig.add_subplot (1, 1, 1)
ax.set_xlim (—3.0, 3.0)
ax.set_ylim(—0.1, 0.9)

frame) )

ax.grid ()

self.time_text = ax.text(0.05, 0.9, 7”7, transform=ax.transAxes)
self .car, = ax.plot ([], [], 7s”, ms=15)

self.line , = ax.plot ([], [], "b=", lw=2)

ani = animation.FuncAnimation(fig , self._plot, self._gen, interval

=1, repeat_delay=3000, repeat=True)
plt.show ()

if self.fig:
steps = range(len(self.x))

Kajal Damji Gada

Page 16 / 17



53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Balancing an Inverted Pendulum

# plt.figure

plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
.plot (steps, self.theta_dot,
plt.
plt.
.show ()
plt.

plt

plt

subplot (2, 1, 1)
title ("x, theta”)

plot (steps, self.x, label="x")
plot (steps, self.theta, label="theta”)

legend (loc="best”)
grid ()

subplot (2, 1, 2)
title ("x_dot, theta_dot”)

plot (steps, self.x_dot, label="x_dot”)

legend (loc="best”)
grid ()

close ()

label="theta_dot”)
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